We investigate the problem of embedding infinite binary sequences into Bernoulli site percolation on Zd with parameter p. In 1995, I. Benjamini and H. Kesten proved that, for d≥10 and p=1/2, all sequences can be embedded, almost surely. They conjectured that the same should hold for d≥3. We consider d≥3 and p∈(pc(d),1−pc(d)), where pc(d)<1/2 is the critical threshold for site percolation on Zd. We show that there exists an integer M=M(p), such that, a.s., every binary sequence, for which every run of consecutive {0s} or {1s} contains at least M digits, can be embedded. Joint work with M. Hilário (UFMG), P. Nolin (ETH) and V. Sidoravicius (IMPA)
Pontificia Universidad Católica de Chile (PUC-Chile)
Av. Vicuña Mackenna 4860, Macul,
Santiago – Chile
(+56 2) 2354 5779
Facultad de Ciencias Físicas y Matemáticas (FCFM)
Universidad de Chile
Beauchef 851, Edificio Norte, Piso 7,
Santiago – Chile