Amitai Linker (U. Chile)

In this talk we present some results on the contact process running on large scale-free networks, where nodes update their connections at independent random times. We will show that depending on the parameters of the model we can observe either slow extinction for all infection rates, or fast extinction if the infection rate is small enough. This differs from previous results in the case of static scale-free networks where only the first behaviour is observed. We will also show that the analysis of the asymptotic form of the metastable density of the process and its dependency on the model parameters can be used to understand the optimal mechanisms used by the infection to survive. Joint work with Peter Mörters and Emmanuel Jacob.

Department of Mathematics

Pontifical Catholic University of Chile (PUC-Chile)

Av. Vicuña Mackenna 4860, Macul,

Santiago – Chile

(+56 2) 2354 5779

Center for Mathematical Modeling (CMM)

Faculty of Physical and Mathematical Sciences (FCFM)

Universidad de Chile

Beauchef 851, Edificio Norte, Piso 7,

Santiago – Chile