Enrique Andjel

Abstract: Consider first passage percolation on ${Z}^d$ with passage times given by i.i.d. random variables with common distribution $F$. Let $t_\pi(u,v)$ be the time from $u$ to $v$ for a path $\pi$ and $t(u,v)$ the minimal time among all paths from $u$ to $v$. We ask whether or not there exist points $x,y \in {Z}^d$ and a semi-infinite path $\pi=(y_0=y,y_1,\dots)$ such that $t_\pi(y, y_{n+1})

Departamento de Matemáticas

Pontificia Universidad Católica de Chile (PUC-Chile)

Av. Vicuña Mackenna 4860, Macul,

Santiago – Chile

(+56 2) 2354 5779

Centro de Modelamiento Matemático (CMM)

Facultad de Ciencias Físicas y Matemáticas (FCFM)

Universidad de Chile

Beauchef 851, Edificio Norte, Piso 7,

Santiago – Chile