Jean-Dominique Deuschel (T.U. Berlin )

We consider an i.i.d. balanced environment  $\omega(x,e)=\omega(x,-e)$,genuinely d dimensional on the lattice and show that there exist a
positive constant $C$ and a random radius $R(\omega)$ with streched
exponential tail such that every non negative
$\omega$ harmonic function $u$ on the ball  $B_{2r}$ of radius
$2r>R(\omega)$,
we have $\max_{B_r} u <= C \min_{B_r} u$. Our proof relies on a quantitative quenched invariance principle for the corresponding random walk in  balanced random environment and a careful analysis of the directed percolation cluster. This result extends Martins Barlow’s Harnack’s inequality for i.i.d. bond percolation to the directed case.

This is joint work with N.Berger  M. Cohen and X. Guo.

 

Sala 3, Facultad de Matemáticas, PUC

Departamento de Matemáticas

Pontificia Universidad Católica de Chile (PUC-Chile)

Av. Vicuña Mackenna 4860, Macul,

Santiago – Chile

(+56 2) 2354 5779

Centro de Modelamiento Matemático (CMM)

Facultad de Ciencias Físicas y Matemáticas (FCFM)

Universidad de Chile

Beauchef 851, Edificio Norte, Piso 7,

Santiago – Chile