Non-intersecting Brownian bridges and the Laguerre Orthogonal Ensemble

We show that the squared maximal height of the top path among N non-intersecting Brownian bridges starting and ending at the origin is distributed as the top eigenvalue of a random matrix drawn from the Laguerre Orthogonal Ensemble. This result can be thought of as a discrete version of K. Johansson’s result that the supremum of the Airy_2 process minus a parabola has the Tracy-Widom GOE distribution. The result can also be recast in terms of the probability that the top curve of the stationary Dyson Brownian motion hits an hyperbolic cosine barrier.

Departamento de Matemáticas

Pontificia Universidad Católica de Chile (PUC-Chile)

Av. Vicuña Mackenna 4860, Macul,

Santiago – Chile

(+56 2) 2354 5779

Centro de Modelamiento Matemático (CMM)

Facultad de Ciencias Físicas y Matemáticas (FCFM)

Universidad de Chile

Beauchef 851, Edificio Norte, Piso 7,

Santiago – Chile