Remy Sanchis

A random perturbation with a tunable parameter in a regular media can sometimes produce a disruption on macroscopic observables. In this talk, we study a percolation model on a random lattice that features such a disruption. More specifically, we show that the Bernoulli percolation in a 3D lattice with columns randomly deleted has a uniform non-trivial threshold. In the course of the proof, we have to understand some geometrical properties of the supercritical 2D cluster. Joint work with M.V Sá and M.R. Hilário.

Departamento de Matemáticas

Pontificia Universidad Católica de Chile (PUC-Chile)

Av. Vicuña Mackenna 4860, Macul,

Santiago – Chile

(+56 2) 2354 5779

Centro de Modelamiento Matemático (CMM)

Facultad de Ciencias Físicas y Matemáticas (FCFM)

Universidad de Chile

Beauchef 851, Edificio Norte, Piso 7,

Santiago – Chile