Seminarios

Atilla Yilmaz (U. Temple)

Título:

Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential

Abstract:

I will present joint work with Elena Kosygina and Ofer Zeitouni in which we prove the homogenization of a class of one-dimensional viscous Hamilton-Jacobi equations with random Hamiltonians that are nonconvex in the gradient variable. Due to the special form of the Hamiltonians, the solutions of these PDEs with linear initial conditions have representations involving exponential expectations of controlled Brownian motion in a random potential. The effective Hamiltonian is the asymptotic rate of growth of these exponential expectations as time goes to infinity and is explicit in terms of the tilted free energy of (uncontrolled) Brownian motion in a random potential. The proof involves large deviations, construction of correctors which lead to exponential martingales, and identification of asymptotically optimal policies.

Nov / 2018 20

Sandro Gallo

Título:

“Soon" returns versus “late" returns in Poincaré recurrence theory

Abstract:

The return time picture for stationary processes was originally addressed by Poincaré with his famous recurrence theorem. In the case of rare events (events of small measure), it is naturally associated to long time behavior, since the Kac Lemma states that the expected return time to a set is the inverse of the measure of the set. It is now well understood that the short time behavior, through the control of the probability of «as soon as possible”-returns to the set, plays a fundamental role in the Poincaré recurrence theory. The main objective of the talk will be to explain how this probability of «soon» returns shows up in the calculations an

Oct / 2018 10

Nicolas Frevenza (Universidad de Buenos Aires)

Título:

Recurrencia y transitoriedad en el frog model

Abstract:

En un grafo cualquiera se considera la siguiente dinámica. En cada vértice se coloca una cantidad de partículas inactivas excepto en un vértice distinguido (raíz) donde se coloca una partícula activa. Las partículas inactivas permanecen quietas mientras que cada partícula activa realiza un paseo aleatorio simple que al encontrarse con partículas inactivas, las activa y éstas comienzan otro paseo aleatorio independiente del resto. A este proceso se lo conoce como frog model y con diferentes variantes ha sido motivo de estudio en los últimos 20 años.

El frog model se dice recurrente si la probabilidad de que la raíz sea visitada una cantidad infinita de veces por partículas activas (frogs), es 1. En caso contrario se dice que es transitorio. La recurrencia y transitoriedad dependen de la configuración inicial, de la geometría del grafo, entre otras cosas.

Oct / 2018 04

Codina Cotar (University College of London)

Título:

Disorder relevance for non-convex random gradient Gibbs measures in d<=2

Abstract:

It is a famous result of statistical mechanics that, at low enough temperature, the random field Ising model is disorder relevant for d<=2, i.e. the phase transition between uniqueness/non-uniqueness of Gibbs measures disappears,  and disorder irrelevant otherwise (Aizenman-Wehr 1990). Generally speaking, adding disorder to a model tends to destroy the non-uniqueness of Gibbs measures.
In this talk we consider – in non-convex potential regime – a random gradient
model with disorder in which the interface feels like a bulk term of random fields. We show that this model is disorder relevant with respect to the question of uniqueness of gradient Gibbs measures for a  class of non-convex potentials and a disorders.
No previous knowledge of gradient models will be assumed in the talk
Sep / 2018 10

Marcelo Hilario

Título:

TBA

Abstract:

TBA

Sep / 2018 04
Departamento de Matemáticas

Pontificia Universidad Católica de Chile (PUC-Chile)

Av. Vicuña Mackenna 4860, Macul,

Santiago – Chile

(+56 2) 2354 5779

Centro de Modelamiento Matemático (CMM)

Facultad de Ciencias Físicas y Matemáticas (FCFM)

Universidad de Chile

Beauchef 851, Edificio Norte, Piso 7,

Santiago – Chile